Development in Earth Science (DES)

Editor-in-Chief: Maofa Ge
Frequency: Continuous Publication
ISSN Online: 2332-3930
ISSN Print: 2332-3922
Paper Infomation

The Greenhouse Effect and the Infrared Radiative Structure of the Earth's Atmosphere

Full Text(PDF, 2910KB)

Author: Ferenc Miskolczi

Abstract: This paper presents observed atmospheric thermal and humidity structures and global scale simulations of the infrared absorption properties of the Earth's atmosphere. These data show that the global average clear sky green-house effect has remained unchanged with time. A theo-retically predicted infrared optical thickness is fully consistent with, and supports the observed value. It also facilitates the theoretical determination of the planetary radiative equilibrium cloud cover, cloud altitude and Bond albedo. In steady state, the planetary surface (as seen from space) shows no greenhouse effect: the all-sky surface up-ward radiation is equal to the available solar radiation. The all-sky climatological greenhouse effect (the difference of the all-sky surface upward flux and absorbed solar flux) at this surface is equal to the reflected solar radiation. The plane-tary radiative balance is maintained by the equilibrium cloud cover which is equal to the theoretical equilibrium clear sky transfer function. The Wien temperature of the all-sky emission spectrum is locked closely to the thermo-dynamic triple point of the water assuring the maximum radiation entropy. The stability and natural fluctuations of the global average surface temperature of the heterogeneous system are ultimately determined by the phase changes of water. Many authors have proposed a greenhouse effect due to anthropogenic carbon dioxide emissions. The present analysis shows that such an effect is impossible.

Keywords: Greenhouse Effect; Radiative Transfer; Global Warming


[1] Arrak, Arno. "Arctic warming is not greenhouse warming" Energy and Environment 22, 8 (2011) 1069-1083

[2] Arrak, Arno. " What Warming? Satellite view of global temperature change" Second edition, CreateSpace, 2010

[3] Arrhenius, S. "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. " Philosophical Magazine and Journal of Science 5,41 (1896) 237-276.

[4] Chandrasekhar, S. " An Introduction to the Study of Stellar Structure " 51-53, Dover Publications, 2010

[5] Chedin, A., and Scott, N., A. " The Improved Initialization Inversion Procedure (3I)" Laboratoire de meteorologie dynamique, CNRS, Note Interne No. 117, LMD, 1983

[6] Clausius, R., J., E., 1870: On a mechanical theorem applicable to heat ; Philosophical Magazine, 4,40 (1870) 127

[7] Costa, S., M., S., and Shine, K., P. "Outgoing Longwave Radiation due to Directly Transmitted Surface Emission" Journal of the Atmospheric Sciences 69 (2012) 1865-1870

[8] Cox, J., P., and Giuli, R., T."Principles of Stellar Structures" 408, Gordon and Breach Science Publishers, 1968

[9] De Bruin, H., A., R." Comments on 'Greenhouse effect in semi-transparent planetary atmospheres' by Ferenc M. Miskolczi." Időjárás 114, 4 ( 2010) 319-324

[10] ERBE Monthly Scanner Data Product. NASA Langley Research Center, Langley DAAC User and Data Services 2004,

[11] Gerlich, G., and Tscheuschner, R., D."Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics." International Journal of Modern Physics, B, 23, 3 (2009) 275-364 , doi:10.1142/S021797920904984X

[12] Fourier, J. "Remarques générales sur les températures du globe terrestre et des espaces planétaires." Annales de Chimie et de Physique 27 (1824) 136-167

[13] Hansen, J., et al. "Climate impact of increasing atmospheric carbon dioxide." Science 213 (1981) 957–966.

[14] Hertzberg, M. "Earth's radiative equilibrium in the solar irradiance." Energy and Environment 20,1 (2009) 83-93

[15] HITRAN2K, (2002) .

[16] Kiehl, J., T., and Trenberth, K.,E. "Earth's Annual Global Mean Energy Budget." BAM S 78(2), (1997) 197-208

[17] Kimoto, K. "On the confusion of Planck feedback parameters." Energy and Environment 20,7 (2009) 1057-1066

[18] Kratz, D., P., et al. "An Inter-Comparison of Far-Infrared Line-by-Line Radiative Transfer Models." JQSRT 90, (2005) 323-341

[19] Lacis, A., Schmidt, G.A., Rind, D., Ruedy, R.A. "Atmospheric CO2: Principal Control Knob Governing Earth's Temperature ." Science 330 (2010) 356-359

[20] Lindzen, R., S. " Taking Greenhouse Warming Seriously." Energy & Environment 18 (2007) 937–950

[21] Manabe, S., and Wetherald, R. ''Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity .'' Journal of the Atmospheric Sciences 24,3 (1967) 242-259

[22] Mihalas, D., and Weibel-Mihalas, B. "Foundations of Radiation Hydrodynamics.", 361, Dover Publications, Inc. Mineola, NY, 1999

[23] Miskolczi, F., M. " High Resolution Atmospheric Radiative Transfer Code (HARTCODE) ." Technical Report. IMGA-CNR, Modena, Italy, 1989

[24] Miskolczi, F. M. and Mlynczak, M. G." The Greenhouse Effect and the Spectral Decomposition of the Clear-Sky Terrestrial Radiation." Időjárás 108,4 (2004) 209-251

[25] Miskolczi, F.M. "Greenhouse effect in Semi-transparent Planetary Atmospheres." Időjárás, 111,1 (2007) 1-40.

[26] Miskolczi, F.M. "The stable stationary value of the earth's global average atmospheric Planck-weighted green-house-gas optical thickness" Energy & Environment 21,4 (2010) 243-262

[27] Miskolczi, F.M. "The stable stationary value of the earth's global average atmospheric infrared optical thickness" EGU 2011 Vienna,

[28] Miskolczi, F. M. "Energetikai Kényszerek az Üvegházhatás Kialakulásában." Hungarian Academy of Sciences (2014) miskolczi_greenhouse_2.pdf

[29] NASA, GSFC, NSSDC. NASA Official: Ed Grayzeck,, LastUpdated: 02 March 2012

[30] NOAA, NASA, USAF. " U.S. Standard Atmosphere, 1976." U.S. Government Printing Office, Washington D. C. 20402, NOAA-S/T 76-1562, 1976

[31] NOAA NCEP/NCAR Reanalysis data time series 2008,

[32] Pierrehumbert, R.,T. "Principles of Planetary Climate." 189, Cambridge University Press, 2010

[33] Pierrehumbert, R.T. "Infrared radiation and planetary temperature ." Physics Today Jan. (2011) 33-38

[34] Ramanathan, V. "The role of ocean-atmosphere interactions in the CO2 climate problem." Journal of the Atmospheric Sciences 38 (1981) 918–930.

[35] Ramanathan, V., and Inamdar, A.,K. "The radiative forcing due to clouds and water vapor." In Frontiers of Climate Modeling Eds. J.T. Kiehl and V. Ramanathan; Cambridge University Press, 2006.

[36] Raval, A., and Ramanathan, V. "Observational determination of the greenhouse effect." NATURE 342 (1989) 758-761

[37] Real Climate (2008). archives/2008/04/egu-2008/comment-page-2/

[38] Rodriguez, R., et al. "Model, software, and data-base for computation of line-mixing effects in infrared Q branches of atmospheric CO2. I. Symmetric isotopomers." JQSRT 61 (1999) 153-184

[39] Science of Doom 2014:

[40] Spencer, R., W. "Comments on Miskolczi’s (2010) Contro-versial Greenhouse Theory." 2010, http://www.

[41] Stephens G., L., et al. "An update on Earth’s energy balance in light of the latest global observations." Nature. Geo-science. 5 (2012) 691–696 doi:10.1038/ngeo1580

[42] TIGR, Thermodynamic Initial Guess Retrieval 2000, /TIGR/TIGR.html

[43] Toth, V. "The virial theorem and planetary atmospheres. Időjárás 114,3 ( 2010) 229-234

[44] Trenberth, K., E. "Atmospheric reanalyzes : A major resource for ocean product development and modeling." Community White Paper, 30 March 2009, Revised 6 August 209, Lead author Kevin E. Trenberth, NCAR, P. O. Box 3000, Boulder CO, 80307

[45] Trenberth, K.,E., Fasullo, J.,T., Kiehl, J. "Earth's Global Mean Energy Budget." BAMS March (2009) 311-323

[46] Ollila, A. "Earth's Energy Balance for Clear, Cloudy and All-Sky Conditions." Development in Earth Science, Vol.1, Issue 1, September, 2013,

[47] Royal Society and the US National Academy of Sciences, An overview. "Climate Change : Evidence & Causes." 2014,

[48] Van Andel, N. "Note on the Miskolczi theory." Energy and Environment 21, 4 (2010) 277-292.

[49] Wild, M. et al. "The global energy balance from a surface perspective." Clim. Dyn. 40 (2013) 3107–3134, doi: 10.1007/s00382-012-1569-8