International Journal of Automation and Power Engineeringhttp://www.seipub.org/IJAPE/RSS.aspxen-USA Linear Model for Characterizing Transient Behaviour in Wide Bandgap Semiconductor-based Switching Circuits2016-0<p class="abstract">A Linear Model for Characterizing Transient Behaviour in Wide Bandgap Semiconductor-based Switching Circuits</p><ul><li>Pages 1-16</li><li>Author Raghav KhannaAnsel BarchowksyAndrew AmrheinWilliam StanchinaGregory ReedZhi-Hong Ma</li><li>Abstract This paper presents a linear model for characterizing transient behavior in power conversion circuits that use wide bandgap semiconductors. It details analytical and experimental characterization of the circuit-level transient phenomena affecting the performance of wide bandgap (WBG) semiconductors. Specifically observed behaviors including voltage overshoot, ringing, and false turn-on are analyzed using equivalent linear circuit models supplemented with experimental characterization. The effect that the parasitic device capacitances have on each of these transient events is also investigated. In order for WBG semiconductor devices to deliver their full performance potential of significantly enhancing next generation power electronic systems, the aforementioned transient characteristics must be eliminated. Due to the agreement between the models’ predicted results and experimental waveforms, the work presented here lays the foundation for optimizing the transient performance of power conversion circuits using WBG semiconductor devices.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=30506International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=30506Enhancing Micro Energy Grid (MEG) Performance by Novel D-FACTS based on GA-ANFIS Integration2016-0<p class="abstract">Enhancing Micro Energy Grid (MEG) Performance by Novel D-FACTS based on GA-ANFIS Integration</p><ul><li>Pages 17-31</li><li>Author Hossam A.GabbarAhmed OthmanAboelsood ZidanJason RungeOwais MuneerManir IshamMayn Toma</li><li>Abstract This paper concerns with enhancing Micro Energy Grid (MEG) performance by Novel Developed Flexible AC Transmission System (D-FACTS) based on the integration of Genetics algorithm (GA) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The design and development of MEG, with hardware demonstration, is developed at the Energy Safety and Control Laboratory (ESCL), University of Ontario Institute of Technology. The hardware/software based system includes implementation of control strategies for Distributed Energy Resources (DER) and programmable loads in a laboratory scale; and the appropriate software was developed to monitor all MEG parameters and to control the various components. The interconnection of renewable energy sources, such as wind power, solar PV and others, are implemented, studied and integrated into this MEG. Furthermore, gas based DERs operate as Combined Heat and Power (CHP) to supply both thermal and electrical loads. The design, development, and hardware setup of this MEG has been presented in a planning stage and an operational stage. Firstly, the planning stage optimizes the size and type of DERs for minimum cost and emissions. Then, in the operational stage, there will be the evaluation of the dynamic response to fine tuning the dynamic response. So a novel D-FACTS device, Green Plug-Energy Economizer (GP-EE) with two DC/AC schemes, is proposed and integrated into this MEG. The integrated GA with ANFIS has been applied to control the settings of GP-EE to fine-tune the system dynamic response. The proposed controller ensures the adaptation of the global control error of dynamic tri-loop regulation for GP-EE. The proposed control strategy leads to get full MEG utilization by increasing the energy efficiency and reliability. Power factor improvement, bus voltage stabilizing, feeder loss minimization and power quality enhancement are realized and achieved. Hardware demonstration with digital simulations have been used to validate the results to show the effectiveness and the improved performance.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=30779International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=30779A New Virtual Isolation Technique for Power Supplies2016-0<p class="abstract">A New Virtual Isolation Technique for Power Supplies</p><ul><li>Pages 32-42</li><li>Author Spiros Cofina</li><li>Abstract This paper describes a new technique of isolation without a transformer. The basic principle of virtual isolation relies on two pairs of switching semiconductors such as IGBT transistors and two capacitors. Each IGBT transistor is connected in parallel to the other: one in the positive rail of the supply and one in the negative. Each pair of the paralleled IGBTs is conducting at different times. Assuming as infinite the impedance of an off state IGBT, there is flow of energy from the input energy source to the output load without an actual ohmic connection, thus achieving isolation between input and output. For a 230V/50Hz neutrally earthed, rectified mains as an input energy source, laboratory and theoretical results converged with good accuracy, even though the addition of a 100KΩ/0.25Watts resistance between an output terminal and the earth was found necessary to alleviate the slightly uncomfortable feeling of an earthed human who touches this terminal. The convergence between practical and theoretical results also validates the theoretical approach of the relevant, previous publications [1], [2]. These results show that future work which includes the addition of a Buck converter in the output can create a highly efficient isolated and regulated power supply. Here, it must be stressed that any commercial production based on the publications of virtual isolation must be made strictly only with the written consent of the present author, as patents have been applied for.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=31856International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=31856Distributed Consensus-Based Primal-Dual Perturbation Method for Economic Dispatch Problem2016-0<p class="abstract">Distributed Consensus-Based Primal-Dual Perturbation Method for Economic Dispatch Problem</p><ul><li>Pages 43-48</li><li>Author Junmeng ZhangBin Zo</li><li>Abstract A distributed consensus-based primal-dual perturbation (PDP) algorithm is presented to solve the economic power dispatch with transmission losses and generator constraints. In the algorithm, agents employ the average consensus technique to estimate the system power mismatch via exchanging messages with neighbors, and meanwhile use a local primal-dual perturbed subgradient method to approach a global optimum. Compared with traditional distributed methods, the proposed PDP method breaks through the assumption of the strict communication structure, and can handle networks of different size and topology. Simulations performed on standard test cases demonstrate the effectiveness of the proposed approach.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=35122International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=35122Distributed Microgrid Model and Its Dynamic Economic Dispatch Algorithm2016-0<p class="abstract">Distributed Microgrid Model and Its Dynamic Economic Dispatch Algorithm</p><ul><li>Pages 49-55</li><li>Author Xuefeng WangBin Zo</li><li>Abstract In the Unit Commitment and dynamic economic dispatch model consisting of microgrid energy management framework, we propose a distributed dynamic economic dispatch calculation algorithm, the algorithm is based on the consistency of the distributed primal-dual perturbation method, using local communication to estimate overall information, to achieve a dynamic economic dispatch problem of the energy storage device comprises temporal correlation of fully distributed solving program. The algorithm requires only local communication adjacency matrix of random, rather than the more stringent doubly stochastic nature, having wider adaptability. The actual data are based on analysis of microgrid operation to verify the characteristics of the algorithm which has good accuracy to meet the convergence rate of the microgrid operation and parameters selection easier.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=35123International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=35123An Intelligent and Cost-effective Solution to Implement High Performance Computing2016-0<p class="abstract">An Intelligent and Cost-effective Solution to Implement High Performance Computing</p><ul><li>Pages 56-61</li><li>Author Afrin NazMingyu LuJoshua KeifferBenjamin Culki</li><li>Abstract In this paper we describe a smart and cost effective way to develop a high performance cluster computer to support the undergraduate education program as well as the research of West Virginia University Institute of Technology (WVU Tech). The proposed high performance cluster computer will be used primarily to support the undergraduate education of WVU Tech; and, it will be used very often. The developed supercomputer will be integrated into a wide range of undergraduate courses in Computer Science and Computer Engineering programs. We are hoping that, the new scalable supercomputer will benefit the entire curriculum of the College of Engineering and Sciences at WVU Tech.</li></ul>http://www.Seipub.org/ijape/PaperInfo.aspx?ID=36337International Journal of Automation and Power Engineeringhttp://www.Seipub.org/ijape/PaperInfo.aspx?ID=36337